
JAX 2016
Dominik Schadow | bridgingIT

Threat Modeling

OWASP Top 10 2013
(1) Injection
(2) Broken Authentication and Session Management
(3) Cross-Site Scripting
(4) Insecure Direct Object References
(5) Security Misconfiguration
(6) Sensitive Data Exposure
(7) Missing Function Level Access Control
(8) Cross-Site Request Forgery
(9) Using Components with Known Vulnerabilities
(10) Unvalidated Redirects and Forwards

Java 8
Spring Boot 1.3 & Spring Security 4
Thymeleaf 2.1, Bootstrap 3.3
Tomcat 8
MySQL 5 (user & application data)

What a the threats?

What a the threats?

XSS
SQL Injection

CSRF
Authentication/
Authorization

What a the threats?

We developers tend to focus on
typical programming errors (like SQL
Injection and Cross-Site Scripting)
and ignore the underlying flaws.

Agenda

Threat
Modeling in

Action

Threat
Modeling
Basics

Identifying
Threats in

Applications

Threat Modeling Basics

Security flaws are introduced early in the
development lifecycle, with no code
developed yet. And still time to change
the application in case of threats.

Different ways to threat model

Identify security flaws early

Focus on attackers: Can you really think
like an attacker?
Focus on assets: What is an asset in your
application? How do you link them to threats?

Attacks tend to
follow the data

flow

Focus on the system
under development

Start with external entities - events which
drive activity like a click in the browser.

Follow the data

Data Flow Diagrams
BrowserExternal

Entity
Users or code outside the
control of the application

Process Any running code (app or
code within one app)

Web
Server

Data
Flow

Communication between
elements (data and method
calls)

Data
Store

Things that store data Database

http

https

Follow the data

Browser
Web

Server Database
App

Server
https https

Trust Boundaries
Generic

Trust
Boundary

Trust
Boundary

Where entities with different
privileges interact - trust
everything inside

Generic Trust Boundary

Web
Server

httpshttps
Web

Server
https

Generic Trust Boundary

Follow the data flow

Start on one side and add a boundary
every time the privilege level changes
(web server, database, …).

Drawing boundaries

Add trust boundaries

Data Center Cloud

Browser
Web

Server Database
App

Server
https https

Technical or organizational boundaries

Networks, Servers, VMs, Firewalls,
Departments, Data Centers, Clouds, …

Typical boundaries

There is always one boundary

Everything in the system has same level
of privilege and has access to everything
in the system.

Everything embedded

Identifying Threats in Applications

Developers easily model the whole
application with all entities, but are having
trouble to identify threats. Start with what
you know and complete it step by step.

Repeat until you are satisfied

1. What are you building?
2. What can go wrong?
3. What should you do about those things that can

go wrong?

Ask yourself (and others)

Follow the data flow

„Sometimes“ indicates alternatives: model all
No data sinks: show the consumers
Data does not move by itself: draw the
process that moves it

What are you building?

Data Center Cloud

Browser
Web

Server Database
App

Server
https https

What can go wrong?
Start with data crossing boundaries

Brainstorming with technology experts
Elevation of Privilege game
STRIDE

STRIDE
Focus on threat, not on category

Spoofing, Tampering, Repudiation,
Information Disclosure, Denial of Service,
Elevation of Privilege

STRIDE

Spoofing Pretending to be something or
somebody else
Violates: Authentication

Tampering Make unauthorized modifica-
tions (disk, memory, network)
Violates: Integrity

STRIDE

Information
Disclosure

Exposing information to
someone not authorized
Violates: Confidentiality

Repudiation Claiming that someone didn’t
do something
Violates: Non-Repudiation

STRIDE

Denial of
Service

Elevation of
Privilege

Absorbing resources needed
to provide service
Violates: Availability

Doing something someone is
not authorized to do
Violates: Authorization

Spoofing
Pretend to be
another user

Denial of Service
Flood server

Repudiation
Execute actions in the
name of other user

Elevation of Privilege
Access backend logic
directly

Tampering
Manipulate data

Information Disclosure
Dump database

Data Center Cloud

Browser
Web

Server Database
App

Server
https https

Should be mitigated by a framework

Cross-Site Scripting, Cross-Site Request
Forgery and SQL Injection should be
mitigated automatically by the chosen
framework.

Code injections

Document all identified threats

Add any threat to the bug tracker and tag
it as security bug. Document how to deal
with it.

Identify threats in meetings

Movie Plot Threats
Fun to discuss

Not really helpful
Focus on realistic ones

Address each threat
Decide as early as possible

Either mitigate, eliminate, transfer or
accept a threat.

Mitigate it
Preferred solution

Do something to make it harder to take
advantage of a threat.
e.g. introducing a password policy

Eliminate it
Most secure solution

Usually results in feature elimination.
e.g. removing admin functionality

Transfer it
Team solution

Someone/ something else handles the
risk (make sure they actually do).
e.g. operations adding a Web Application
Firewall

Accept it
Last resort solution

Stop worrying about it and live with the
risk.
e.g. a secret service subverting one of
your employees

Threat
Target

Mitigation
Strategy

Mitigation
Technique

Prio ID

Repudiating
actions

Log Log all relevant
actions in audit log

2 101

Spoofing a
user

Identification
and

authentication

Password policy,
token, password
reset process

1 179

Network
flooding

Elastic cloud Dynamic cloud
resources to auto
scale

3 16

Tampering
network
packets

Cryptography HTTPS/TLS 1 10

Is it complete?
Checks show you are not done, but

none shows you are

Easy: STRIDE completely in the diagram
Harder: One threat per diagram element
The truth: You are never done

Breadth before depth
Threat model the whole application

Make sure to threat model all features
whose failure have security or privacy
implications and all features that cross
trust boundaries.

Threat Modeling in Action

Use one tool to threat model and version
your models in a repo. Check and update
them every time the application changes.

Demo

Update the model
A threat model is a living document

New threats might arise without a single
change in the system. Update the model
with every application change.

Test your threats
No threat (mitigation) without test

Write positive (normal usage) and
negative (attack) tests for each threat.

@Test
@WithMockUser(username = "admin", password =
"admin", roles = "ADMIN")
public void verifyAdminAuthorizeOK() {
 mvc.perform(get("/admin"))
 .andExpect(status().isOk());
}

@Test
@WithMockUser(username = "user", password =
"user", roles = "USER")
public void verifyAdminAuthorizeNOK() {
 mvc.perform(get("/admin"))
 .andExpect(status().isForbidden());
}

Threat model before you start to code

Address every threat and test your solution

Remember there is no total security

Summary

Avoiding the Top 10 Software Security Design Flaws  
www.computer.org/cms/CYBSI/docs/Top-10-Flaws.pdf

Microsoft Threat Modeling Tool  
www.microsoft.com/en-us/sdl/adopt/threatmodeling.aspx

Mozilla SeaSponge  
air.mozilla.org/mozilla-winter-of-security-seasponge-a-tool-for-
easy-threat-modeling

Threat Modeling: Designing for Security (Adam Shostack)  
eu.wiley.com/WileyCDA/WileyTitle/productCd-1118809998.html

Pictures  
www.dreamstime.com

BridgingIT GmbH  
Königstraße 42 
70173 Stuttgart

dominik.schadow@bridging-it.de  
www.bridging-it.de/entwickler  
blog.dominikschadow.de @dschadow

mailto:dominik.schadow@bridging-it.de
http://blog.xml-sicherheit.de

