
Basel Bern Lausanne Zurich Düsseldorf Frankfurt/M. Freiburg i. Br. Hamburg Munich Stuttgart Vienna

Push up your code – next generation

version control with (E)Git

Dominik Schadow

Senior Consultant

Application Development

dominik.schadow@trivadis.com

Java Forum Stuttgart, 07.07.2011

© 2011 Push up your code – next generation version control with (E)Git 2

Agenda

 Almost all about Git and EGit

 Push and pull, a typical day

with Git

 The ultimate question of

version control

© 2011 Push up your code – next generation version control with (E)Git 3

Agenda

 Almost all about Git and EGit

 Push and pull, a typical day

with Git

 The ultimate question of

version control

© 2011

Subversion and CVS have many disadvantages

Creating a branch is easy and fast

Merging is a pain (most of the time)

All branches are shared, no local (private) branches

Central repository server makes backups easy

Everybody is working against the same repository

Clients require server connection for most operations

Performance is good for certain operations

Slow merge, diff or switch operations

Slows down as the project (history) grows larger

Push up your code – next generation version control with (E)Git 4

© 2011

Git was created in the Linux community

Push up your code – next generation version control with (E)Git 5

2005 Git development starts in the Linux (kernel) community

by Linus Torvalds

2006 JGit development starts, a 100% pure Java

reimplementation of the Git version control system

2009 EGit/ JGit move to Eclipse, first projects migrate to Git

2010 (Sep) EGit/ JGit 0.9.1

2011 (Feb) EGit/ JGit 0.11.1

2011 (Jun) EGit/ JGit 1.0 with Eclipse 3.7

2012 (Jun) EGit/ JGit 2.2 with Eclipse 3.8

© 2011

JGit and EGit are official Eclipse projects

 The original Git

 Original version developed by the Linux community

 Distributed under the GNU General Public License (GPL)

 JGit is a lightweight Java library implementing Git

 JGit library can be found in many Java based products

 Plug-ins for Eclipse and NetBeans IDE, Hudson CI server,

Apache Maven, and Gerrit Code Review

 Distributed under the Eclipse Distribution License (EDL)

 EGit is the Eclipse team provider and uses JGit

 No team provider trouble as with Subversion

 Normally no command line required

 Distributed under the Eclipse Public License (EPL)

Push up your code – next generation version control with (E)Git 6

© 2011

Git is a Distributed Version Control System (DVCS)

 Git clients fully mirror the repository

 Every clone is a complete backup

 Git always clones the entire repository

 No partial checkout possible

 The whole repository is available locally

 Entire development history

 Complete repository with all branches, not only the latest snapshot

 No network connection required

 Most operations, except push/pull and fetch, work offline

 Much better performance

 No central server is required

 Local repository for private development

 Clients can directly communicate with each other

Push up your code – next generation version control with (E)Git 7

© 2011

Branching and merging is easy and fast

 Branching and merging are an essential Git concept

 Create local branch for each feature/ bug fix you work on

 You can have many feature branches at any time

 Easy to switch between them

 No mix up of changes in the same branch

 History-aware merging capability

 Auditing of branch and merge events

Push up your code – next generation version control with (E)Git 8

„In Git it‘s common to create, work on, merge, and

delete branches several times a day.“
http://progit.org/book

http://progit.org/book

© 2011

The default ‘trunk’ is called ‘master’ in Git

 All branches are local after creation

 Extremely fast, no network communication required

 Every developer’s working copy is a private branch

 Easy to share a branch (or tags) with other developers

 But most branches live only for a short time locally

 Push to share

 git push (remote) (branch)

Push up your code – next generation version control with (E)Git 9

© 2011

Store your working directory and revert

 Use git stash to record current working directory state

 Saves current state of work

 Resets working tree/ index to match latest version of current

branch (a clean workspace)

 Re-apply it at later to continue your work

Push up your code – next generation version control with (E)Git 10

© 2011

There are three main states/ sections in a Git project

Push up your code – next generation version control with (E)Git 11

Working

Tree

Staging

Index

Local

Repository

git add

git commit

 git checkout

B
a

s
e

d
 o

n

h
tt

p
:/

/p
ro

g
it
.o

rg
/b

o
o

k

modified

staged

http://progit.org/book

© 2011

Changes flow between repositories by push and pull

Push up your code – next generation version control with (E)Git 12

Working

Tree

Staging

Index

Local

Repository

git add

git commit

 git checkout

Remote

Repository

git push

 git pull

B
a

s
e

d
 o

n

h
tt

p
:/

/p
ro

g
it
.o

rg
/b

o
o

k

combines

git fetch and

git merge

all commits

from the local

branch not

available in the

remote branch
push completely

finished features

only

 git fetch

http://progit.org/book

© 2011

The index is a staging area for the next commit

 Index is changed via git add

 State of the index becomes the tree of the next commit

 Index provides an extra layer of control

 Index is like an active changeset

Push up your code – next generation version control with (E)Git 13

© 2011

Git tracks objects by their hash value

 Each blob is identified/ named by a SHA-1 hash

 Git automatically computes the hash

 Hash input is the objects content

 Tamper-proof signature as a bonus

 Blob does not contain any metadata

 Path and filename information is not considered

 A renamed file is still linked with the original version

 Sometimes problems with binary files

 Even a small change might create a whole different hash

 Relationship between new and original file might be lost

Push up your code – next generation version control with (E)Git 14

© 2011

The append-only object database

 Git stores each revision of a file as a unique blob object

 Relationships between the blobs

 Can be found through examining the tree and commit objects

 Newly added objects are stored in their entirety

 Git saves states, not deltas as Subversion

 Uses zlib compression

Push up your code – next generation version control with (E)Git 15

B
a

s
e

d
 o

n

h
tt

p
:/

/p
ro

g
it
.o

rg
/b

o
o

k

http://progit.org/book

© 2011 Push up your code – next generation version control with (E)Git 16

Agenda

 Almost all about Git and EGit

 Push and pull, a typical day

with Git

 The ultimate question of

version control

© 2011

Git command line

 Git is available for Linux, Mac OS X and Windows

 Windows command line is a little bit slower

 Clients/ command lines are in different development stages

 Generally better and tighter integration on Linux and Mac OS X

 Some initial configuration required

 Creates the .gitconfig file in your home directory

 Via command line or Eclipse preferences

Push up your code – next generation version control with (E)Git 17

© 2011

Git commands

Push up your code – next generation version control with (E)Git 18

© 2011

EGit/ JGit installation via Eclipse update site

 Git command line is not

required

 But Plug-ins do not

provide command line

interface

 Install via update site

 Eclipse EGit

 Eclipse JGit

Push up your code – next generation version control with (E)Git 19

 Before Indigo http://download.eclipse.org/egit/updates

http://download.eclipse.org/egit/updates

© 2011

EGit provides almost everything you need

Push up your code – next generation version control with (E)Git 20

© 2011

Cloning an existing repository

 Git clone automatically names the clone master

 master is based on the remote origin branch

 Creates a new directory

 Using the Git repository name as directory name

 Use optional directory parameter to specify a different name

 All its data is pulled to the local repository

 A pointer to its master is created

 Never modify the single (one and only one) .git directory

 That is the Git repository

 Exists only once in your repository root

 Files/ directories under the parent of .git are the working tree

Push up your code – next generation version control with (E)Git 21

© 2011

Initialize a new repository or clone an existing one

Push up your code – next generation version control with (E)Git 22

Git supports many different protocols:

file, ftp, git, http, https, sftp, ssh

faster, more efficient, but read-only

© 2011

Creating new branches

 Creating a new branch creates a new pointer (fast!)

 Points to the same commit currently working on

 Switch to the new branch with checkout

 Or create and switch with a single command

Push up your code – next generation version control with (E)Git 23

© 2011

Merging is trivial in Git

 Each changeset tree node

 Contains a pointer to its previous node

 Back to the first commit

 Git knows what changes need to be made

 And at what point in history they need to be applied

 Automatically merges the given branch into the active one

 Listing the merged and unmerged branches

Push up your code – next generation version control with (E)Git 24

© 2011

Switch to the branch to merge the changes in

 Use git merge and select the branch to integrate

 Fast-forward merge

 Only the other branch changed

 No merge operation required

 Three-way merge

 Both branches changed

 Don’t expect miracles, conflicts

happen: Resolve with merge tool

or manually

Push up your code – next generation version control with (E)Git 25

© 2011

Searching for Git commits

Push up your code – next generation version control with (E)Git 26

© 2011

EGit History view and the Git log

Push up your code – next generation version control with (E)Git 27

© 2011 Push up your code – next generation version control with (E)Git 28

Agenda

 Almost all about Git and EGit

 Push and pull, a typical day

with Git

 The ultimate question of

version control

© 2011

Git command line interfaces and tools

 gitg http://trac.novowork.com/gitg

 giggle http://live.gnome.org/giggle

Push up your code – next generation version control with (E)Git 29

 Git for OS X http://code.google.com/p/git-osx-installer

 GitX http://gitx.frim.nl

 cygwin http://www.cygwin.com

 msysGit http://code.google.com/p/msysgit

 TortoiseGit http://code.google.com/p/tortoisegit

http://trac.novowork.com/gitg
http://trac.novowork.com/gitg
http://live.gnome.org/giggle
http://live.gnome.org/giggle
http://code.google.com/p/git-osx-installer
http://code.google.com/p/git-osx-installer
http://code.google.com/p/git-osx-installer
http://code.google.com/p/git-osx-installer
http://code.google.com/p/git-osx-installer
http://gitx.frim.nl/
http://www.cygwin.com/
http://code.google.com/p/msysgit
http://code.google.com/p/tortoisegit

© 2011

Git IDE integration

Push up your code – next generation version control with (E)Git 30

 Useable version since EGit 0.11

 Stable version available with Eclipse

Indigo

 Updates 1.1/2.0/2.1/2.2 already scheduled

up to Eclipse 3.8

 Stable version available since version 10.x

 Usable version with some features

available since version 7.0

© 2011

Always keep in mind

 IDE integration

 Sometimes still in an early stage

 More updates in the future

 Usage concept

 (totally) different from CVS/ SVN

 Build server integration
 A plug-in for Git is required

 Available for Hudson and Jenkins

 No central server

 Makes backup of latest version more difficult

Push up your code – next generation version control with (E)Git 31

© 2011

The first step is always the hardest

 Create a new branch for every feature item, bug fix, …

 commit as often as you like

 push once when the feature, bug fix, … is complete

 reset (revert) depends on where the changes are

 Command line

 git checkout file for not staged (not added) files

 git reset HEAD file for staged files

 EGit requires simple selection of reset type (soft, mixed, hard)

 SHA-1 hash value instead of a revision number

 Usually the first six or seven characters are enough

Push up your code – next generation version control with (E)Git 32

© 2011

(E)Git Pros and Cons

Push up your code – next generation version control with (E)Git 33

Performance: extremely fast even in large projects

Offline mode: no server connection required

Branching/ merging: fast merging is done all the time

Fully distributed: no central server required

Repository size: requires less space as SVN

Search view: search for commits in Eclipse

Creativity: experimental branches for new ideas

Revisions: Hash value required for distributed versioning

No partial checkout: clones the entire repository

© 2011

And the winner is…

 EGit is ready

 Use it for your next new project

 Faster and much more fun

 Some commands are not available in EGit yet

 Install command line as well

 Updates already scheduled until Eclipse 3.8

 As a temporary alternative

 Connect your existing repositories via

 git svn

 git cvsimport

Push up your code – next generation version control with (E)Git 34

Keep in mind

Once started, it is very difficult to go back…

© 2011

More information

 Git http://git-scm.com

 Git Community Book http://book.git-scm.com/

 ProGit http://progit.org

 Git Cheat Sheet http://ktown.kde.org/~zrusin/git/

 GitHub www.github.com

 Eclipse JGit www.eclipse.org/jgit

 Eclipse EGit www.eclipse.org/egit

 Linus Torvalds on Git http://www.youtube.com/watch?v=4XpnKHJAok8

 It’s time to stop using Subversion http://altdevblogaday.org/2011/03/09/its-time-

to-stop-using-subversion

Push up your code – next generation version control with (E)Git 35

http://git-scm.com/
http://git-scm.com/
http://git-scm.com/
http://book.git-scm.com/
http://book.git-scm.com/
http://book.git-scm.com/
http://progit.org/
http://ktown.kde.org/~zrusin/git/
http://www.github.com/
http://www.eclipse.org/jgit
http://www.eclipse.org/egit
http://www.youtube.com/watch?v=4XpnKHJAok8
http://www.youtube.com/watch?v=4XpnKHJAok8
http://www.youtube.com/watch?v=4XpnKHJAok8
http://altdevblogaday.org/2011/03/09/its-time-to-stop-using-subversion
http://altdevblogaday.org/2011/03/09/its-time-to-stop-using-subversion
http://altdevblogaday.org/2011/03/09/its-time-to-stop-using-subversion
http://altdevblogaday.org/2011/03/09/its-time-to-stop-using-subversion
http://altdevblogaday.org/2011/03/09/its-time-to-stop-using-subversion
http://altdevblogaday.org/2011/03/09/its-time-to-stop-using-subversion
http://altdevblogaday.org/2011/03/09/its-time-to-stop-using-subversion
http://altdevblogaday.org/2011/03/09/its-time-to-stop-using-subversion
http://altdevblogaday.org/2011/03/09/its-time-to-stop-using-subversion
http://altdevblogaday.org/2011/03/09/its-time-to-stop-using-subversion
http://altdevblogaday.org/2011/03/09/its-time-to-stop-using-subversion

?
www.trivadis.com

Basel Bern Lausanne Zurich Düsseldorf Frankfurt/M. Freiburg i. Br. Hamburg Munich Stuttgart Vienna

Thank you!

