
Basel Bern Lausanne Zurich Düsseldorf Frankfurt/M. Freiburg i. Br. Hamburg Munich Stuttgart Vienna

Push up your code – next generation
version control with (E)Git

Dominik Schadow
Senior Consultant
Application Development

dominik.schadow@trivadis.com

Java Lounge, 05.04.2011

© 2011Push up your code – next generation version control with (E)Git2

Agenda

Data are always
part of the game.

� (Almost) all about Git and EGit

� Push and pull, a typical day with Git

� The ultimate question of version
control

© 2011Push up your code – next generation version control with (E)Git3

Agenda

Data are always
part of the game.

� (Almost) all about Git and EGit

� Push and pull, a typical day with Git

� The ultimate question of version
control

© 2011

Subversion and CVS have many disadvantages

Creating a branch is easy and fast
Merging sucks (almost) all the time
No local branches

Central repository server makes backups easy
No distributed servers for distributed teams
Clients require server connection for most operations

Performance is OK for small projects and some operations
Slow merge, diff or switch operations
Slows down as the project (history) grows larger

Push up your code – next generation version control with (E)Git4

© 2011

Git is a Distributed Version Control System (DVCS)

� Git clients fully mirror the repository
� Not only the latest snapshot (revision)

� Every clone is a complete backup
� The whole repository is available locally

� Copy of the entire development history
� Complete repository with all branches and tags

� No network connection required
� Most operations work offline

� Commit/ merge/ diff/ branch and many more
� Much faster

� Most extreme, no central server is required
� Local repository for private development

Push up your code – next generation version control with (E)Git5

© 2011

Branching and merging is easy and fast

� Branching and merging are an essential Git concept
� Create local branch for each feature/ bugfix you work on
� You can have many feature branches at any time

� Easy to switch between them
� No mix up of features in the same branch

� All branches are local after creation
� Fast – no network communication required
� Every developer’s working copy is a private branch

� Branches can be shared with others
� Most branches live only for a short time locally

Push up your code – next generation version control with (E)Git6

© 2011

Git is young, EGit and JGit even younger

Push up your code – next generation version control with (E)Git7

2005 Git development starts in the Linux (kernel) community
by Linus Torvalds

2006 JGit development starts, a 100% pure Java
reimplementation of the Git version control system

2009 EGit/ JGit move to Eclipse, first Git migrations

2010 (May) Eclipse projects start to migrate to Git

2010 (Sep) EGit/ JGit 0.9

2011 (Feb) EGit/ JGit 0.11.3

2011 (Jun) EGit/ JGit 1.0 will be shipped with Eclipse Indigo

© 2011

The story of Git, JGit and EGit

� The original Git
� Original version developed by the Linux community
� Distributed under the GNU General Public License (GPL)

� Official Eclipse projects must use the EPL
� Eclipse Public License (EPL) and GPL are incompatible
� Distribution chaos and installation trouble as with Subversion?

� JGit and EGit are official Eclipse projects
� JGit is a lightweight Java library implementing Git
� EGit is the Eclipse team provider and uses JGit

Push up your code – next generation version control with (E)Git8

© 2011

Closeup on JGit and EGit

� JGit and EGit are available in version 0.11.3
� Plug-in (GUI) provides all features for normal tasks

� Usable, but sometimes GUI does not offer all options
� Git command line is sometimes required
� Especially complicated operations may not be supported yet

� JGit library can be found in many Java based products
� Plug-ins for Eclipse and NetBeans IDE, Hudson CI server, Apache

Maven, and Gerrit Code Review

� Version 1.0 will be released mid 2011
� Feature complete

� No command line necessary any more
� Full integration with Eclipse (Indigo)

� Better than the Subversion provider integration

Push up your code – next generation version control with (E)Git9

© 2011

Git commands

Push up your code – next generation version control with (E)Git10

© 2011

There are three main states/ sections in a Git project

Push up your code – next generation version control with (E)Git11

Working
Directory

Staging
Area

Local
Repository

git add

git commit

git checkout/ git merge

B
as

ed
 o

n
ht

tp
://

pr
og

it.
or

g/
bo

ok

modifiedmodified

stagedstaged

© 2011

Push and pull with a remote repository

Push up your code – next generation version control with (E)Git12

Working
Directory

Staging
Area

Local
Repository

git add

git commit

git checkout/ git merge

Remote
Repository

git push

git pull

B
as

ed
 o

n
ht

tp
://

pr
og

it.
or

g/
bo

ok

combines
git fetch and
git merge

all commits
from the local
branch not
available in the
remote branch

Push finished
features only,
use one commit!

© 2011

Git tracks files by their content

� Each object is identified by a SHA-1 hash of its contents
� Value is used as the object's name
� Git computes the hash

� Path and filename information is normally not considered
� A renamed file is still linked with the original version
� Sometimes problems with binary files

� Even a small change might create a whole different hash
� Relationship between new and original file might be lost

Push up your code – next generation version control with (E)Git13

© 2011

The append-only object database

� Git stores each revision of a file as a unique blob object
� Relationships between the blobs

� Can be found through examining the tree and commit objects
� Newly added objects are stored in their entirety

� Git saves states, not deltas as Subversion
� Using zlib compression

Push up your code – next generation version control with (E)Git14

B
as

ed
 o

n
ht

tp
://

pr
og

it.
or

g/
bo

ok

© 2011

Start by cloning an existing repository

� Git clone automatically names the clone origin
� origin is based on the remote master branch
� Creates a new directory

� Using the Git repository name as directory name
� Use optional parameter directory to specify a different name

� All its data is pulled to the local repository
� A pointer to its master is created
� Never modify the created .git directory

� Is the Git repository
� Exists only once in your repository root
� Files/ directories under the parent of .git are the working tree

Push up your code – next generation version control with (E)Git15

© 2011

Clone, create and a wizard

Push up your code – next generation version control with (E)Git16

init
clone

© 2011

Branching and merging is fast, easy and fun

� Push to share branches
� Branches are never automatically shared with remote

repository
� Simply type git push (remote) (branch)

Push up your code – next generation version control with (E)Git17

„In Git it‘s common to create, work on, merge, and
delete branches several times a day.“
http://progit.org/book

© 2011

The origin/master branch cannot be deleted

� Creating a new branch creates a new pointer
� Points to the same commit currently working on
� A manual switch to the new branch is required

� Listing the merged and unmerged branches

Push up your code – next generation version control with (E)Git18

© 2011

Merging is normally done automatically

� Switch to the branch you intend to merge the changes in
� Use git merge with the branch name you want to integrate
� Fast-forward merge (only one branch changed) or three-way

merge (both branches changed)
� A commit is executed automatically (can be switched off)

Push up your code – next generation version control with (E)Git19

© 2011Push up your code – next generation version control with (E)Git20

Agenda

Data are always
part of the game.

� (Almost) all about Git and EGit

� Push and pull, a typical day with Git

� The ultimate question of version
control

© 2011

Git command line installation

� Git is available for Linux, Mac OS X and Windows
� Windows command line is a little bit slower

� Clients/ command lines are in different development stages
� Generally better and tighter integration on Linux and Mac OS X

� Configuration file requires some work
� .gitconfig in user home directory

Push up your code – next generation version control with (E)Git21

© 2011

Git command line interfaces and tools

� gitg http://trac.novowork.com/gitg
� giggle http://live.gnome.org/giggle

Push up your code – next generation version control with (E)Git22

� Git for OS X http://code.google.com/p/git-osx-installer
� GitX http://gitx.frim.nl

� cygwin http://www.cygwin.com
� msysGit http://code.google.com/p/msysgit
� TortoiseGit http://code.google.com/p/tortoisegit

© 2011

Initial configuration requires some information

Push up your code – next generation version control with (E)Git23

Type git help config for more information on parameters
On Windows, this can be done in the Eclipse EGit plug-in.

© 2011

EGit/ JGit installation and configuration

� Git command line is
not required
� But Plug-ins do not

provide command line
interface

� Install via update site
� Eclipse EGit
� Eclipse JGit
� EGit Mylyn (optional)

Push up your code – next generation version control with (E)Git24

http://download.eclipse.org/egit/updates

© 2011

A typical day with Git

1. Share a new project and create a new Git repository

2. Add and commit all files

3. Modify a file and commit it

4. Create a new branch Bugfix and switch to it

5. Change a file and commit it

6. Switch back to the master branch

7. Merge it with the Bugfix branch

8. Show the changes in the History view

Push up your code – next generation version control with (E)Git25

© 2011

A typical day with Git (1)

� Share a new project and create a new Git repository
� Move repository folder up one level, do not create the repository

inside the project
� Click Create Repository and Finish when done

Push up your code – next generation version control with (E)Git26

© 2011

A typical day with Git (2)

� Add all files via
Team ���� Add

� Commit them via
Team ���� Commit

� Click the Add Signed-
off-by checkbox

Push up your code – next generation version control with (E)Git27

© 2011

A typical day with Git (3)

Push up your code – next generation version control with (E)Git28

© 2011

A typical day with Git (4)

� Change the
message in the Java
class

� Click Team ���� Add
on the file

� Commit the file via
Team ���� Commit

� Don’t forget to check
the Add Signed-off-
by checkbox

Push up your code – next generation version control with (E)Git29

© 2011

A typical day with Git (5)

� Create a new branch
named Bugfix via Team
���� Branch ���� New
branch…

� The new branch is
activated automatically

� See how the repository
path in the Package
Explorer changed

Push up your code – next generation version control with (E)Git30

© 2011

A typical day with Git (6)

� Change the
Readme.txt

� Use Team ����
Commit without
Team ���� Add before

� Enter the message,
select signed-off-by
and commit the
changes

Push up your code – next generation version control with (E)Git31

© 2011

A typical day with Git (7)

� Switch back to the
master branch via Team
���� Branch

� Readme.txt is still the old
one

Push up your code – next generation version control with (E)Git32

© 2011

A typical day with Git (8)

� Open the Merge dialog
via Team ���� Merge

� Select the Bugfix branch

� Click the Merge button

� Confirm the Merge
Result dialog

� The file(s) get merged
and committed right
away

Push up your code – next generation version control with (E)Git33

© 2011

A typical day with Git (9)

Push up your code – next generation version control with (E)Git34

© 2011Push up your code – next generation version control with (E)Git35

Agenda

Data are always
part of the game.

� (Almost) all about Git and EGit

� Push and pull, a typical day with Git

� The ultimate question of version
control

© 2011

Git IDE integration

� Eclipse
� Useable version available, supports most Git commands
� Full featured version with Eclipse 3.7 in June 2011

� IntelliJ IDEA
� Stable version available, supports subset of Git commands

� JDeveloper
� Not available

� NetBeans
� Full featured version with NetBeans 7.0 in April 2011

Push up your code – next generation version control with (E)Git36

© 2011

Git Pros and Cons

Push up your code – next generation version control with (E)Git37

Fast – extremely high performance even in large projects
Offline mode – no server connection required
Rapid branching and merging – merging is done all the time
Fully distributed – no central server required
Supports creativity – just hack something in a new branch

Fast – extremely high performance even in large projects
Offline mode – no server connection required
Rapid branching and merging – merging is done all the time
Fully distributed – no central server required
Supports creativity – just hack something in a new branch

IDE integration – still in an early stage
Version numbers – a GUID is required for distributed versioning
IDE integration – still in an early stage
Version numbers – a GUID is required for distributed versioning

Usage concept – (completely) different from CVS/ SVNUsage concept – (completely) different from CVS/ SVN

© 2011

And the winner is…

Push up your code – next generation version control with (E)Git38

© 2011

More information

� Git http://git-scm.com

� ProGit http://progit.org

� Gerrit Code Review http://code.google.com/p/gerrit/

� GitHub www.github.com

� Eclipse JGit www.eclipse.org/jgit

� Eclipse EGit www.eclipse.org/egit

� NetBeans Git http://netbeans.org/projects/versioncontrol/pages/Git_main

� Linus Torvalds on Git http://www.youtube.com/watch?v=4XpnKHJAok8

� It’s time to stop using Subversion http://altdevblogaday.org/2011/03/09/its-time-
to-stop-using-subversion

Push up your code – next generation version control with (E)Git39

?
www.trivadis.com

� � �

Basel Bern Lausanne Zurich Düsseldorf Frankfurt/M. Freiburg i. Br. Hamburg Munich Stuttgart Vienna

Thank you!

