
Vault in Action

Dominik Schadow
bridgingIT

JAX
08.09.2020

Secret handling in a typical project

Secrets stored in code or as environment variables

as Docker or Kubernetes secrets

who has access to a secret and uses itNo control about

auditing secret access

rotating secrets (they live forever)

revoking secrets

No support for

Secrets management wishes

Single central service

All secrets are securely stored (encrypted)

Apps and users can only access their secrets

Secrets have a time-to-live (TTL)

All interactions can be logged in an audit log

requirements

Vault is extensive - we’ll focus on the dev parts

We assume secure
operations,

patches, HTTPS,
high availability,

and all other
operational stuff…

Agenda

1

2

Vault Basics you need to know as
a developer

Authentication and Authorization
to access only your secrets

3 Dynamic Secrets for applications
and users

Vault Basics

Vault in a nutshell

Open Source and Enterprise editions

Central store for sensitive data and secrets

Generation, storage, and distribution of secrets

Detailed audit logs for all secret interactions

Provides HTTP API and CLI

Access anything(*) via path

secret/sample-user/pin

sys/policy/dev-policy

(*) like
Authentication backends

Storage backends

Policies

Configurations

Secrets

Storage backends

Multiple storage backends Azure, Cassandra,
CockroachDB, Consul, CouchDB, DynamoDB, Etcd,
Filesystem, FoundationDB, Google Cloud Spanner, Google
Cloud Storage, In-Memory, Manta, MSSQL, MySQL, OCI
Object Storage, PostgreSQL, Raft, S3, Swift, Zookeeper

Support static and dynamic secrets

Data encrypted at rest with symmetric key

Vault is always started in sealed state

Based on Shamir’s Secret Sharing algorithm

Unsealing (opening) requires n keys (persons)

Unsealing provides master key (splitted into shards) to
Vault, reconstructs encryption key

Auto unseal with trusted device or service

Delegates responsibility of securing the master key

Multiple providers AliCloud KMS, AWS KMS, Azure Key
Vault, GCP Cloud KMS, OCI KMS, Vault Transit

Some operations require manual unseal (like generating
a root token)

Best practices

Don’t let secrets live forever, use a short time to live

Distribute secrets securely with principle of least
privilege and use an audit log to trace secret
distribution

Detect unauthorized access

Enough with operations,
lets move on to
development

Authentication
and Authorization

Authentication

Before a client or user can interact with Vault, it must
authenticate against an activated authentication
backend

After successful authentication, a token is returned to the
client or user

Authentication methods

Authentication is provided by pluggable backends

Various auth methods for apps and users AppRole,
AliCloud, AWS, Azure, Cloud Foundry, Google Cloud, JWT/
OIDC, Kubernetes, GitHub, LDAP, Oracle Cloud
Infrastructure, Okta, RADIUS, TLS Certificates, Tokens,
Username & Password

Without storing a secret outside of Vault

Kubernetes scheduler can guarantee for the application

Cloud IAM service can identify the application

Others (may) require storing a secret outside Vault

 Vault token alongside app

 Approle roleId/ secretId alongside app

 TLS client certificates with cert auth method

Only authorized applications, policies restrict access

„What kind of secret
can I access?“

„What can I do with
that secret?“

Policies

Vault uses policies to manage and safeguard access

Declarative way to deny (default) or grant access to
operations and paths

create, read, update, delete, list, sudo, deny

Usually written in HashiCorp Configuration Language
(HCL)

|-- database
|-- secret
 |-- config-client-vault
 |-- custom-secrets
|-- transit
 |-- config-client-vault-key
 |-- another-key

|-- database
|-- secret
 |-- config-client-vault
 |-- custom-secrets
|-- transit
 |-- config-client-vault-key
 |-- another-key

config-client-policy.hcl
path "secret/config-client-vault" {
 capabilities = ["read"]
}

path "secret/custom-secrets" {
 capabilities = ["create", "read",
"update", "delete", "list"]
}

path "transit/*" {
 capabilities = ["read", "update"]
}

path "database/creds/config-client-
vault-write" {
 capabilities = ["read"]
}

|-- database
|-- secret
 |-- config-client-vault
 |-- custom-secrets
|-- transit
 |-- config-client-vault-key
 |-- another-key

|-- database
|-- secret
 |-- config-client-vault
 |-- custom-secrets
|-- transit
 |-- config-client-vault-key
 |-- another-key

|-- database
|-- secret
 |-- config-client-vault
 |-- custom-secrets
|-- transit
 |-- config-client-vault-key
 |-- another-key

create (provide) config-client-policy
vault policy write config-client-policy \
 policies/config-client-policy.hcl

Token authentication

Default authentication method (and easiest one)

With disclosed token, everybody can gain access, so
never expose a root token in production

create a token with policy
vault token create -policy=config-client-policy

spring.cloud.vault:
 authentication: TOKEN
 token: s.39SL8SdQsr5Hq7nqLc6Mb76d

AppRole authentication

Intended for machine or apps authentication

Two hard to guess (secret) tokens  
 RoleId

 SecretId (optional, required by default) - treat as password
 With secret_id_num_uses, secret id can be forced to be
 regenerated after a number of uses
 Typically provided as environment variable
 SPRING_CLOUD_VAULT_APP_ROLE_SECRET_ID

create config-client role
vault write auth/approle/role/config-client \
 token_ttl=1h \
 token_max_ttl=4h \
 token_policies=config-client-policy

update config with returned role-id
vault read auth/approle/role/config-client/
role-id

update env (config) with returned secret-id
vault write -f auth/approle/role/config-client/
secret-id

spring.cloud.vault:
 authentication: APPROLE
 app-role:
 role-id: 07c2ca09-1c50-a0f2-c1ef-8a9e1130089c
 secret-id: 713f1d28-5f06-f0f6-85de-ee2dbea0a63d

Demo

Use helper supervisors outside Spring

envconsul queries Vault and puts secrets in env
variables

consul-template queries Vault und puts secrets in
config files

Both require a Vault token and restart the application
when secret changes (consul-template can also signal
instead of restart)

Vault Agent

Special mode within the Vault application: vault agent

Auto-auth to get a token (e.g. with approle)

Writes secrets into file(s) used by the app

Kill command for app required after template rendered

Not a supervisor like envconsul/ consul-template

Dynamic Secrets

Classical static secrets

Created once (and often forever)

Static for all applications (each
application)

Securely stored in Vault, loaded
into application at start up

Dynamic secrets

Created just in time (on-demand)

Unique per client (app or user)

Auto expiring (time-to-live)

Database roles

Role configuration controls the tables a use has access
and the lifecycle of the credentials

Different roles per connection can exist (e.g. read-only,
write, …)

Vault runs the given SQL statement to create the role

When TTL expires, Vault runs the given SQL statement to
revoke the role

enable dynamic database secrets
vault secrets enable database

create an all privileges role
vault write database/roles/config-client-vault-write \
 db_name=config-client-vault \
 creation_statements="CREATE ROLE \"{{name}}\" \
 WITH LOGIN PASSWORD '{{password}}' VALID UNTIL \
 '{{expiration}}'; \
 GRANT ALL PRIVILEGES ON ALL TABLES IN SCHEMA public \
 TO \"{{name}}\";" \
 revocation_statements="ALTER ROLE \"{{name}}\" NOLOGIN;"\
 default_ttl="1h" \
 max_ttl="24h"

Database connections
A connection manages the root access for a database

Connection in Vault is the configuration to connect to and
authenticate with each database

Parameter

plugin_name configures which database plugin to use

allowed_roles defines which roles can use this connection

connection_url is a standard connection string to access the
database

Initial root password

Connection string uses template variables to enable
Vault's root credential rotation feature (Vault automatically
rotates the root credentials for the database)

Vault saves the password but you cannot retrieve it

create the database connection
vault write database/config/config-client-vault \
 plugin_name=postgresql-database-plugin \
 allowed_roles="*" \
 connection_url="postgresql://{{username}}:{{password}} \
 @postgres:5432/config-client-vault?sslmode=disable" \
 username="postgres" \
 password="password"

command only
works with running

PostgreSQL and
existing database

force rotation for root user
vault write --force /database/rotate-root/config-client-vault

careful, make sure
you have another

role with root
permissions left

create new credentials
vault read database/creds/config-client-vault-write

Application
(or user) Vault

read
database/creds/readonly create user

ok
return user & password

delete user

1 2

3

5
4

Database

Vault managed credentials

Unique credentials - easy auditing

Vault manages the lifecycle of credentials (rotating and
revoking as required)

Vault requires root credentials for the database to create
credentials on demand

Supports various databases (Spring supports them all)
Cassandra, Elasticsearch, Influxdb, HanaDB, MongoDB,
MSSQL, MySQL/ MariaDB, PostgreSQL, Oracle

extend the policy to retrieve dynamic credentials
path "database/creds/config-client-vault-write" {
 capabilities = ["read"]
}

enable dynamic database credentials in bootstrap.yml
spring.cloud.vault:
 database:
 enabled: true
 role: config-client-vault-write

credentials are obtained via Vault
spring:
 datasource:
 url: jdbc:postgresql://localhost:5432/config-client-vault

add the spring-cloud-vault-config-databases dependency
<dependency>
 <groupId>org.springframework.cloud</groupId>
 <artifactId>spring-cloud-vault-config-databases</artifactId>
 <version>2.2.5.RELEASE</version>
</dependency>

https://bit.ly/2vctdBE

https://cloud.spring.io/spring-cloud-vault/reference/html/%23vault.config.backends.database
https://cloud.spring.io/spring-cloud-vault/reference/html/%23vault.config.backends.database

Basic solutions

Configure the max time-to-live - possible when frequently
redeploying the application
Vault: The system max TTL, which is 32 days but can be
changed in Vault’s configuration file - be careful, not for
production

Use a LeaseListener to restart the application when
credentials are rotated

https://bit.ly/2PuvIpB

Solution for relational databases

Renew the database credentials at runtime - supports
only relational databases and requires Spring Boot with a
HikariCP

1. Detect when database credentials are expiring

2. Get new dynamic database credentials from Vault

3. Refresh database connection to use new credentials

https://bit.ly/2Vq8yVf

Demo

Vault is extensive, we have just touched the surface

Summary

Vault provides tons of features for secret
management

Get rid of (static) secrets in application code and
move on to (dynamic) secrets in Vault

Remember Vault security, it’s the central
location with all your secrets

Demo Project
github.com/dschadow/CloudSecurity
Spring Cloud Vault Reference
cloud.spring.io/spring-cloud-vault/reference/html
Vault
www.vaultproject.io

Pictures  
www.dreamstime.com

Marienstr. 17  
70178 Stuttgart

dominik.schadow@bridging-it.de  
www.bridging-it.de

Blog blog.dominikschadow.de  
Twitter @dschadow

https://github.com/dschadow/CloudSecurity
https://github.com/dschadow/CloudSecurity
mailto:dominik.schadow@bridging-it.de?subject=
http://www.bridging-it.de
mailto:dominik.schadow@bridging-it.de?subject=
http://www.bridging-it.de
http://blog.xml-sicherheit.de
http://blog.xml-sicherheit.de

